Test-driving driverless cars

Home > Opinion > Columns

print dictionary print

Test-driving driverless cars

ANN ARBOR - It is June 15, 2030, and for Sam and Sue of Ann Arbor, Michigan, it is going to be a busy day. Their daughter Sophia has a 9 a.m. karate match. At noon, her older sister Sally’s high school graduation commencement will begin. And by 3 p.m., the house must be ready for Sally’s graduation party.

At 8:40, Sam uses a smartphone app to order a ride from Maghicle, Ann Arbor’s mobility service, which uses self-driving robotic vehicles. Within minutes, Sam, Sue, and Sophia are headed for the karate club. En route, Sophia studies videos of her opponent’s past matches, while Sue catches up on emails and Sam orders appetizers and flowers for the party. They arrive at the club on time, and the robot proceeds to pick up someone else.

Sally, who must arrive at school by 10:30, has already ordered a Maghicle ride. When she boards at 10:15, she receives a text message from her best friend Amanda, who wants to ride with her. Sally enters Amanda’s address in the Maghicle app, and the robot chooses the best route.

At 11:30, as a victorious Sophia trades her karate uniform for something better suited for her sister’s graduation, Sam receives a text message confirming that a small temperature-controlled pod has delivered the appetizers for Sally’s party in the secure, refrigerated drop-box at the house. When Sophia is ready, the family orders another Maghicle ride, this time to Sally’s school. They take their seats and, as Sam waves to Sally sitting with her classmates, he is struck by how quickly 17 years have passed.

In 2013, Sam’s day would have been far more difficult, stressful, and expensive. He would have wasted far too much time in his gas-guzzling SUV, stuck in traffic jams or searching for parking spaces. Now, because he does not need to own a car, he spends far less money on transportation and has more time to do as he pleases. With services like Maghicle enabling people to get around safely, affordably, conveniently, and sustainably, Sam does not have to worry about his wife or daughters getting into automobile accidents, as his parents worried about him.

By contrast, today’s road transportation system is inconvenient, unsustainable, and dangerous. Of the nearly one billion motor vehicles worldwide - enough to circle the planet 100 times if parked end to end - some 95 percent depend on oil for energy, making car travel subject to resource geopolitics and price volatility. Furthermore, combustion engines account for more than one-fifth of the world’s carbon emissions, contributing significantly to climate change. And, with more than 1.2 million people dying on the road each year, car travel remains a proven killer.

Sam’s world of 2030 is not mere fantasy. But achieving it will require a thorough overhaul of the existing road transportation system - and that means overcoming the complex combination of public and private elements, vested interests, ingrained business models, and massive inertia that has so far impeded its development. Indeed, with certain institutions and industries benefiting when all of the system’s components - vehicles, roads, fuel stations, traffic laws, regulations, vehicle standards, and licensed drivers - work together, no transformational development has occurred in road transportation since Karl Benz invented the car and Henry Ford popularized it.

A narrow focus on, say, developing better batteries, improving fuel efficiency, or making automobile production more sustainable is inadequate to catalyze the needed transformation. A genuinely transformational solution is needed - one that meets the needs of consumers, businesses, and governments.

An integrated network of driverless, electric vehicles that are connected, coordinated, and shared should form the core of that solution. Such vehicles would be programmed to avoid crashes, leading to fewer deaths and injuries and less property damage. In order to minimize the excessive resource consumption associated with driving, the vehicles would be tailored to trip characteristics, such as the number of passengers.

For example, lightweight, two-passenger vehicles can be up to ten times more energy efficient than a typical car. In the United States, where 90 percent of automobiles carry one or two people, reliance on such vehicles would result in a dramatic decline in carbon emissions, which would fall even further as a result of less road congestion and smoother traffic flows. Moreover, the land and infrastructure needed for parking would be significantly reduced.

Under such a system, personal mobility could cost up to 80 percent less than owning and operating a car, with time efficiencies augmenting those savings further. For Americans earning minimum wage ($7.25 per hour), time spent driving at a rate of 30 miles (48 kilometers) per hour costs $0.24 per mile. At the U.S. median hourly wage of $25, each mile costs $0.83. Given that Americans drive roughly three trillion miles annually, saving just one cent per mile implies $30 billion in annual savings.

The technology needed to advance such a scheme exists. The task now is to introduce prototype systems in representative communities, in order to prove what is possible, discover consumers’ preferences, determine the most attractive business models, and identify and avert unexpected consequences.

Once the prototypes have proved effective and practical, they should scale quickly without public incentives. As with other innovations - such as mobile phones, e-books, digital photography and music, and flat-screen televisions - large-scale deployment will occur when the new technologies reach the market tipping point, when their value to consumers exceeds the costs to businesses of supplying them. Policymakers would be responsible only for guaranteeing the expanding system’s safety.

A cleaner, safer, more convenient road transportation system is possible - and closer to being realized than many believe. It needs only the opportunity to prove itself.

Copyright: Project Syndicate, 2013.


*The author, professor of engineering practice at the University of Michigan and former director of Columbia University’s Program for Sustainable Mobility, is a senior adviser to the chairman of Hess Corporation and a consultant at Google.

by Lawrence D. Burns
Log in to Twitter or Facebook account to connect
with the Korea JoongAng Daily
help-image Social comment?
s
lock icon

To write comments, please log in to one of the accounts.

Standards Board Policy (0/250자)